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Abstract 

The orientational relationships between two lattices of 
equal density can be analysed by the factorization of their 
transition matrices into a product of no more than four 
shears with rational directions. The particular cases 
where a coincidence lattice exists correspond to a 
factorization into at most two completely rational shears. 
The present paper gives a geometrical analysis of these 
situations. The main result is a classification that is 
different from the usual one in terms of the coincidence 
index 17. The relationship between these two approaches 
is given in detail and some experimentally observed 
examples are discussed. 

1. Introduction 

The aim of mathematical crystallography is the classifi- 
cation of periodic structures by means of different 
equivalence relationships, yielding the well known 
crystallographic classes and Bravais lattices. Crystal- 
lography is based on an analysis of the symmetry 
operations associated with these structures. Such 
operations are the isometric transformations that leave 
the structure unchanged, i.e. that bring the transformed 
structure into full coincidence with the original one. In 
this respect, the most important generalization of this 
analysis is the consideration of particular symmetries for 
which the initial and the transformed structure only 
partially coincide on a common sublattice. This new 
development of crystallography was initiated by Bollmann 
(1970, 1982), who introduced the notions of coincidence 
site lattices (CSL), displacement shift complete lattices 
(DSC) and O lattices. This approach has received 
growing interest both from theorists and experimental- 
ists, particularly in the field of interfaces and grain 
boundaries (see, for instance, Pond 1989). Furthermore, 
the notion of a CSL was recently extended in the case 
of quasiperiodic structures with non-crystallographic 
symmetries by Warrington & Radulescu (1995). 

In this paper, we propose a new analysis of 
coincidence lattices and related orientation relationships. 
This armlysis is based on the properties of the transition 
matrix between two lattices: If L a and L b are lattices with 
bases {al, a2, a3} and {bl, b2, b3}, the corresponding 
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transition matrix T is defined by bi = ~ Tjia j. Now, if T 
has determinant 1, there exists a factorization of T as a 
product of at most  f o u r  shear matrices with rational shear 
directions (Duneau & Oguey, 1991; Duneau, 1992). 
These shear transformations are of the form 
S = I + Is)(~l, where s is an irreducible vector with 
integer entries and g is a covector orthogonal to s. Since 
Sx -- x + (g, x)s, the vector s defines the shear direction 
and the covector g specifies the invariant plane. The 
point is that for particular pairs of lattices and for 
particular relative orientations, the transition matrix T 
may be factorized into less than four shear matrices: the 
number of shears required to map L a onto RL b is a 
function of the rotation R. For instance, if there are two 
reciprocal vectors ~ 6 L* and qb 6 L* (L* denotes the 
reciprocal lattice of L) having the same length, i.e. 
Iq~l -- Iqbl and if R is any rotation such that qa = Rqb, 
the transition matrix T between L a and RL b can be 
factorized into at most three shears. Within this class of 
rotations, there are particular ones, for which at most two 
shears are required for the factorization. For these 
situations, there exists an intermediate lattice which is a 
simple shear deformation of both L a and RL b. These 
particular orientational relationships are believed to have 
physical relevance and will be considered in this paper. A 
similar approach was used in Donnadieu & Duneau 
(1994) to give a new analysis of orientational relation- 
ships in some duplex steels. Moreover, it was proved by 
Duneau, Oguey & Thalal (1992) that whenever L a and 
RL b share a coincidence lattice the double shear 
condition is satisfied with the further property that the 
shear matrices have rational entries. The main purpose of 
this paper is to give a simple method to compute and to 
identify these cases. 

In §2, we recall standard properties of shear transfor- 
mations. In §3.1, we consider the double shear condition 
and give a simple method to identify the corresponding 
orientational relationships. In §3.2, we treat the example 
of rotations of cubic lattices, which are associated with a 
coincidence site lattice. In ~4, we show how one can 
determine the shear transformation corresponding to a 
given rotation axis q, a rotation angle q) and a given index 
I7 of the CSL. In the last section, we will compare 
experimental observations of mechanical twins in silicon 
obtained by Putaux & Thibault-Dessaux (1990) with our 
theoretical calculations of some meaSured quantities. 
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2. Shear transformations and fractional shears 

For completeness, we recall some useful properties of 
shear transformations (Duneau & Oguey, 1991; Duneau, 
1992). By definition, a 3D shear transformation is a 
linear mapping which reads: 

I 
1 -}- slcr I SlO" 2 SlO" 3 

S = I + Is)(or[ = s20" 1 1 -a t- s20" 2 $20" 3 

S30" I S30" 2 1 "a t- S30" 3 

(1) 

so that its action is given by 

S(x)  = x + (~, x>s, (2) 

where (or, x) denotes the scalar product between direct 
space and reciprocal space. 

We assume that s is an irreducible vector of some 
lattice L (the indices of s with respect to a basis of L are 
coprime). The covector ~ specifies the invariant plane of 
the shear since S(x) = x is equivalent to (~, x) = 0. We 
shall also assume that (~, s) = 0, a condition equivalent 
to det(S) = 1, so that the transformed lattice S(L)  has the 
same density of nodes as L. Furthermore, S(L)  contains s 
as an irreducible vector so that both lattices share the 
same bundle of lattice lines parallel to s. The inverse 
transformation is simply given by S -1 = I - Is)(~l. 

The mapping S is unbounded in the sense that S(x) - x 
diverges when x runs over L. For this reason, such a 
mapping can hardly be accepted as a model of a 
structural transformation between two lattices. Therefore, 
'fractional' shears were introduced (Duneau & Oguey, 
1991; Duneau, 1992) as elementary boundedffansforma- 
tions between lattices. The fractional shear S associated 
with S is the (non-linear) mapping defined by 

S(x) = x + frac[(o, x)]s, (3) 

where frac[t] denotes the fractional part of t, between 
- 1 / 2  and 1/2, so that t = rnd[t] + frac[t], where md[t] 
denotes the nearest integer. 

The relationship between S and S is given by 
S(x) = S ( x ) - r n d [ ( c r ,  x)]s. Since s belongs to L and 
S(L) ,  we see that the fractional shear S also maps L onto 
S(L).  T h e  displacement field associated with the 
fractional shear is S(x) - x = frac[(cr, x)]s. It is bounded 
by Ilsll/2 so that S is a bounded one-to-one mapping 
between L and S(L) .  So, for each factorizalion of the 
transition matrix T between two lattices, there exists a 
corresponding bounded transformation between them. 

3. The double shear condition 

3.1. Doub le  shear  condit ion 

In this section, we give a simple geometric character- 
ization for the existence of a double shear transformation 
between two lattices of equal density of nodes. Let L a 

and L b be two such lattices given in standard orientations, 
for instance cubic lattices with axes parallel to the 
standard basis vectors of space. We want to determine 
those rotations R that bring L b into a position such that La 
and RL b are related by a double shear. 

The result of the present analysis is that the double 
shear property is equivalent to the existence of a rotation 
R such that: 

(i) One can find some irreducible reciprocal vectors qa 
of L~* and qb of L~, such that ~ = R ~ .  We will write 
qa =Rqb  = q. 

(ii) There exist two irreducible vectors s~ ~ L,, and 
Sb ~ Lb for which s~ x RSb =- t -F l2q ,  where F is a 
positive integer and ~ is the common volume of the unit 
cells. 

In order to simplify the notation, we will write 
L~ = RL b, L~* = RL~, and, in general, x ' - - R x  for x in 
L b or L~,. 

We will prove the above statement which can be 
written in short as 

double shear property between L a and R L  b 

4----> 3 a rotation R: 

(2) 3 s ~ L ~ ,  s b ~ L b" 

q a  = Rqb ---- q; 
S a X RS b = 4-Fa'2q. (4) 

Proof .  

(a) ==~: Assume first that L a and L~, are related by a 
double shear. This is equivalent to the existence of an 
'intermediate' lattice A (see Fig. 1), which is a simple 
shear deformation of both La (by the shear S a = 

I + ISa)(Cral ) and L~ (by the shear S~, = I + Is~)(~l): 

so 5 -  Lo ~ A L~. (5) 

The shear vector s a is an irreducible vector of La and A;  
similarly, s~, is an irreducible vector of L~ and A. The 
covectors ¢ra and ~ satisfy the orthogonality condition 
(~a, s~> = (%, s~> = 0. 

Since Sa and s~, belong to A, they span a lattice pl lane~ f 
P of A. Now, as S~ maps L~ onto A, the plane (Sa)-  (P) 

1" If s~ and s~, were collinear, L a and L' b would be related by a unique 
shear. 

L a P Sa .  A P < S'b RL~ K R  El ~ 

t a ~  R S b ~ ~  R ~ ~ ' ~  S b l - -  1 

Sa Sa Rtb-.,~/ t b 

Fig. 1. For certain rotations R, L a and L~ ---- RL b are related by a double 
shear, i .e. there exists an intermediate lattice A such that 
A = SaL a = S'bL' b. The figure illustrates the situation in a plane P 
perpendicular to the rotation axis q. 
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is a lattice plane of L a. This plane is spanned by the two 
-1 -1 t t t vectors (Sa) (Sa) = Sa and (Sa) (Sb) = Sb -- (%, Sb)Sa 

of L~. Therefore, (Sa) - l (P)  = P so that P is also a lattice 
plane of La. Likewise, one easily checks that P is a lattice 
plane of L~,. Besides, any lattice plane of A parallel to P 
is also invariant by Sa and S~. Consequently, the three 
lattices L a, L' b and A lie on a common stack of parallel 
lattice planes. The dual lattices L*, L~,* and A* therefore 
have a common irreducible reciprocal vector q normal to 
P and this gives the first necessary condition: 

3qa  EL~*, qb ~L~,: q~ = ~  = q ,  (6) 

where q~, = Rqb. 
Furthermore, there exists a basis {u~, %, Wa} of L~ and 

a basis {u~,, v~, w~} of L~ such that {v o, Wa} forms a basis 
of the 2D lattice L~ e = L o M P (LaP is the intersection of L o 

• ! 

with the plane P) and {v~, w~,} is a basis of L~ P = L b M P. 
Let g2 = (u~, %, Wa) = (u~,, v~, w~,) denote the common 
volume of the unit cells of L~ and L~. The reciprocal 
vectors q~ and q~ are then given by q~ = ~2 -I (Va x % )  
and q~, = 12 -I (v~, x w~,) and satisfy (~ ,  Ua)  - -  (q~,, u~,) = 
1. 

The unit cells of the 2D lattices L P, L'b P and A e 
have the same area A = IV a X W o I -  IV~ X W~I-- 
ISa(Va) X Sa(Wa) [ --  ~lq~l - -  S2lq~,l-- a'21ql and conse- 
quently their 2D lattices have the same density of nodes. 
Since the two vectors s~ and s~, belong to A P, they span a 
sublattice of A P. This gives rise to the second condition: 

3 S a E L a, S b E L b " S a x s~ = :kFl2q (7) 

with S~ " -  RS b and where the positive integer F denotes 
the index of this sublattice with respect to A P. 

(b) ¢==: Now let us assume that the above conditions 
(6) and (7) are fulfilled, i.e. there exists a rotation R such 

' =- t -FI2q.  We will show that q~ = q~ = q and s,, x s b 
that L o can be mapped onto L~, by a double shear 
(S~,)-tS~, where again So --  I + ISo)(%[ and S'b = 
I + Is~)<~'bl. As mentioned above, this is equivalent to 
the existence of an intermediate lattice A between L~ and 
L~, which is A = S~L~ = S'bL' b. 

By (6), the vector q is normal to a plane P of L~ and 
L~. We can choose a vector t a in L a such that s~ and t~ 
form a basis of L e yielding s~ x t~ = Y2q and similarly a 
vector t~, in L' f  giving ~ x s~, = S2q. 

The existence of a double shear corresponds to the fact 
that the sheared basis {So, Sa(ta)} and {s~,, S~,(fb)} span the 
same 2D lattice A P. S~(ta) lies on a line parallel to s~ at t~ 
and, similarly, S~,(fb) lies on a line parallel to s~, at fb (see 
the dashed lines parallel to s~ and s~, in Fig. 2, which 
illustrates the case F ----- 2). The intersection of these lines 
defines the vector • = F-I(s~ + s~,) forming a basis with 

' S2q. ' i . e . s ~ x , = S 2 q a n d x x s  b =  so as well as with s b, 
Thus, we can assume that Sa(ta) -- S~,(t~,) -- ~. 

Finally, it remains to completely specify the shears 
S~ and S~, in terms of % and ~b. The following 
equations fully characterize % and ~ by means of 
scalar products: 

( la)  (fo, Sa) -- 0 

(lb) (~ ,  s~,) = 0 

(2a) S~(t.) = x ¢----> 

(2b) S~(fb) = ~ -'. '.- 

(3)  & ( u 0  = S ; ( u ; )  e---> 

t~ + (oo, ta)Sa " -  'C 

t;  + = 

Ua + (fi~, Ua)S~ 
! ' ' 

Ub)S b 

(8)  

with ~ = 1 - ' - 1 ( 8  a o l - s ~ ) .  The intermediate lattice A is 
spanned by s o, • and Sa(uo) [or by s~,, z and S~,(u~,)]. 

Additionally, we will optimize So and S~, so that the 
shear amplitudes are as small as possible. The choice of 
the vector to which forms a basis with so is not 
completely determined because any vector of the form 
t o + n So, where n is an integer, is convenient, too. The 
same is true for any vector t a' + n' s b' forming a basis of 
L'b P with s~,, where n' is again an integer. In order to have 
small shear amplitudes, we will choose n and n' such that 
I(%, to + nSo)[ < 1 and [(~b, fb + n' S~)[ _< ½. We find: 

n = rnd{[(x, so) - (t~, so)]/s 2} (9) 

n ' =  r n d { [ ( x ,  

It follows that 

( fa,  ta + nSa) --  f rac{[(x ,  So) -- (ta, Sa)]/a2a} --  ~a 

(~ , fb  + n '  s ; ) =  frac{[(x, s;) - (fb, S ; ) ] /~}  ------~. 

(10) 

Solving the third relation of (8), we get: 

(fia, Ua) : [ (U;  - -  U a , S a ) s  ~ - -  (U;  - - U  O , s ; ) ( s  a , S ; ) ]  

× [ d s ;  - (so, s;)2] - '  

- - ( "  (11) 
(fib'  U; )  --- - - [ ( U ;  - -  U a, S;)S~a - -  (U;  - -  Ua, Sa)(S a, S;)]  

X [S~aS f - -  (S a, S;)2] -1 

--(b- 

In summary, the following equations determine f,, and 

L~ S~ , A P c S~ RL~ 

F = 2 ~ T =  1/2 %÷R%) 

Fig. 2. If there exist some vectors s,, and s~, such that s, x s' h = 4 - F ~ q ,  
the existence of  an intermediate lattice A is ensured and the double 
shear property between L a and L~ follows. In the plane P, A p is either 
spanned by sa and ~ or by s~, a n d ,  with ~ = F-~(sa + s~). The lattice 
spanned by s~ and s~, is a sublattice with index F with respect to A e. 
The figure corresponds to F = 2. 
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(la) (~,Sa)=O (lb) (~ ,s~)=O 
(2a) (%, t~) = ~e (2b) (~'b, t~,) = (b 

(3a) (%, ua) = (~ (3b) ((~/b, U ; )  = (b"  

(12) 

This analysis clearly shows that the double shear 
conditions (6) and (7) specify particular orientational 
relationships associated with a rotation R. If the shear 
vectors s~ and s b are reasonably small and the index F 
bounded, only finitely many solutions can be found. It 
must be noticed that, even for cubic lattices, such simple 
solutions may lead to irrational relative orientations with 
no coincidence lattice. 

3.2. Example  o f  the (hkl) rotations in a cubic system 

In this section, we analyse the rational orientational 
relationships in a cubic lattice resulting from the double 
shear condition. As proved by Duneau, Oguey & Thalal 
(1992), all relationships associated with a coincidence 
site lattice fall into the double shear case (note, however, 
that the inverse is not true in general). The existence of a 
CSL requires that the transition matrix T mapping a basis 
of the lattice L a onto a basis of the lattice L~, is rational 
(Warrington & Bufalini, 1971; Grimmer, 1976). Thus, if 
we assume La and Lb equal to Z 3 (S2 = 1), the transition 
matrix T is equal to the rotation matrix R. Therefore, if R 
is rational, we need at most two nontrivial shears to map 
La onto L~,. 

Now the rotation axis is specified by a reciprocal 
vector q = (hkl) normal to the plane P that contains the 
shear vectors Sa and s~,. The rotation angle ¢p of R is such 
that the cell spanned by s~ and s~, has an area A = Flql ,  
where Iq] = ( h2 + k2 + 12) 1/2 and 12 = 1. If 0 is the angle 
between s~ and s~, (see Fig. 3), the condition (7) reads 

[.SallS~, I sin(0) = 2Flql = 2F(h 2 + k 2 -t-/2)1/2,  (13) 

where 2 = 4-1. 

S b 
0~ Rsb 

-'--a 
0 <  0 < rd2  
~t= 1,~,= 1 

~ Sa 

Rs b sb 

- n  _< 0 < - ~ 2  
p. = -1 ,  ~, = - I  

R ~ s b >  

~/2 _< 0 < 
I.t = - 1 , ~ .  =1  

a 

$b 
$b 

- ~ 2 S 0 < 0  
g = l , E = - 1  

Fig. 3. The angle between s a and s b is denoted by or, the one between sa 
and s' b by 0 so that we have ~o = 0 - ~ for the rotation angle ~0. The 
variables 2 and /z are given by sin(0)=Alsin(0)[ and 
cos(0) =/zl cos(0)l. Depending on the angle 0, 2 and /z can take 
the values +1 and -1 and consequently one gets four different values 
of ~o for given q, Isal, Isbl, a and r .  

If ct denotes the angle between sa and s b, then 
q9 = 0 -  or. The above formula therefore gives all 
possible rotation angles ~o depending on q, ~, Isal, Isbl 
and/-'. In the following, we will select those/", sa and Sb 
for which the rotation matrix R is rational and therefore 
yields a 3D coincidence lattice L~ N L~. Then, we will 
show how to compute the corresponding 27. 

First, we calculate the 3D rotation matrix R in a basis 
{u, v, w} common to both cubic lattices L,, and L b and 
adapted to our problem. The vectors v and w span the 
plane P normal to the rotation axis q. 

The action of a rotation R about an axis q through an 
angle ~0 is given by 

Rx -- [(q, x)/q2]q + cos(~o){x - [(q, x)/q2]q} (14) 

+ [sin(9)/Iql]q x x. 

The matrix entries of R in the basis {u, v, w} can be 
deduced from 

Ru = u + {F[1 -cos(~o)]/q 2 - B sin(~o)/lql}v 

+ {G[1 - cos(9)]/q 2 + A sin(~o)/Iql}w 

Rv = [cos(~o) - D sin(~o)/lql]v + C[sin(~o)/Iql]w 

Rw = -E[sin(fp)/lql]v + [cos(~o) + D sin(~o)/Iql]w, 

(15) 

where A, B, C, D, E, F and G are integers given 
by A = ( u , v ) ,  B = ( u , w ) ,  C = ( v , v ) ,  D = ( v , w ) ,  
E = (w, w), F = BD - A E  and G = A D  - BC. 

Now one can see that the rationality of the rotation 
matrix R is equivalent to the rationality of cos(9) and 
sin(~o)/Iql. From (13), we have s i n ( 0 ) -  2FIql/Is,,llSbl 
and cos(0) =/x[1 - sin2(0)] 1/2, where 2 = 4-1 and 
/x = +1. For given Sa and s b, we can calculate cos(u) = 
(s~,s b) /Is a I ISb I and consequently sin(or) = v[ 1 --cos 2 (00] 1/2, 
where v = +1 or - 1 ,  depending on whether s~ x Sb 
is parallel to q (v = 1) or antiparallel to q (v = - 1 ) .  
Using elementary trigonometry, we can express cos(tp) 
and sin(9)/Iql in terms of q, ct, Isal, ISbl and/-': 

cos(9) = (tx(S2a s2 - F2 q2)I/2(Sa, Sb) 

jr. 2 v F  { q2[s2as ~ _ (Sa, Sb)2]} 1/2)/S2aS~ 

= - lzv(s~s b - sin0p)/Iql (2Fq2(Sa, Sb) 2 2 rZq2)1/2 

x {q2[S2aS ~ -- (s~, Sb)2]} I/2)/q2s2s~" 

(16) 

As the value of v is fixed by s~ and s b, one gets four 
different values of ~o for given q, Is~l, Isbl, c~ and F,  
depending on whether 2 and/z are +1 or - 1  (see Fig. 3). 

Finally, straightforward calculations show that cos(q~) 
and sin(q~)/Iql are rational numbers if and only if 

2 2 _ / - , 2 q 2 ) 1 / 2  the terms (sasb and {q2[S2aS2 b -- (S,,, Sb)2]} 1/2are 
both integers. If these conditions on F, sa and Sb are met, 
then the rotation matrix R is irrational. The double shear 
yields a CSL and the corresponding index 27 can be 
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easily obtained by computation of the 1.c.m. of the 
denominators of {Ro}i, j ~ {u,v,w}" 

Table 1 shows an example of rotations about an The shear vectors 
axis q =  (0,0, 1). The basis {u,v,w} is given by sb=m0v+nbw= 
u = (0, 0, 1), v = (1, 0, 0) and w = (0, 1, 0). The vectors 

1" ~ ,  m a n a m b no  
v and w span the plane orthogonal to q and (q, u) = 1. 
The table gives a systematic list of shear directions 1 5 1 0 2 1 

1 13 1 1 3 2 
S a - -  m a y  q- now and s b = m b V  %- n b W  for increasing 1 17 1 0 1 4 

values of F,  for which the calculated cos(go) and 1 25 2 1 3 1 
sin(go)/lql values are rational. In each step, the 1 29 2 1 2 5 

corresponding rotation angle go and 27 are calculated. 1 41 1 1 5 4 
1 65 3 2 2 1 

Missing 27 are due to necessary bounds on the indices F, 1 85 3 1 4 1 

ma, b and no, o given in the computer algorithm (here: 1 145 5 2 3 1 

1 < F < 5 and 0 < ma, b, ha, b <_ 5) .  For instance, 1; = 37 1 145 2 1 5 2 
is missing in our table due to the limits on the shear 1 221 3 2 5 3 

parameters. It can be found for F = 1 m a = 1, n a = 0,  1 325 4 3 3 2 
' 1 1025 5 4 4 3 

m b = 6, n b = - 1  and go = 18.9246. Table 1 is also 2 85 2 1 4 1 
limited to rotation angles in the interval [0, rr/4]; this is 2 125 4 3 2 1 
justified in our example, where the lattices are cubic and 2 533 5 4 3 2 

the rotation axis q = (001). 3 65 3 2 3 1 
3 205 5 4 2 1 

4. Single shear transformations and coincidence site 
lattices for cubic systems 

Previously, we have selected those F,  s a and s b for which 
the rotation matrix R is rational and have calculated the 
corresponding 1;. Now, one can examine the inverse 
problem, i.e. determine the shear transformations for a 
priori given rotation axis q, rotation angle go and index 
1;. It turns out that for the particular case of cubic lattices 
one single shear transforms L o into L~. We will show 
how to determine it in principle. 

We therefore apply the method developed by Duneau, 
Oguey & Thalal (1992), especially the theory of Smith 
normal forms (see Newmann, 1972; Hua Loo Keng, 
1982) and a theorem about triangular matrices. As 1; 
corresponds to the 1.c.m. of the denominators of the 
rotation matrix R, one can see that 1;R is an integer 
matrix, with entries depending on the rotation angle go 
and the adapted basis {u, v, w} [see (15)]. The theorem of 
Smith ensures that there exist modular matrices U and V 
(integer matrices with determinant 4-1) such that 
A = U(27R)V is a diagonal integer matrix. Such a 
diagonal Smith matrix is unique and has the following 
form in the present case: (100) 

A =  0 1; . (17) 
0 0 1;2 

The modular matrices U and V are obtained by an 
algorithm, but are not uniquely defined. Yet another 
theorem guarantees that one can associate a second pair 
of modular matrices U' and V' to a diagonal integral 
matrix ,4 such that 3"--  U',4V'  is a triangular matrix 
with ,4 given by (17). U' and V' can be constructed from 
,4 and we have: 

Table 1. Double shear relationship associated with a 
CSL with rotation axis q = (001) 

are given by s a = may -a t- n~w = (m~, ha, O) and 

(m b, n b, 0). 

3 425 4 3 5 3 
3 493 5 2 4 1 
4 377 3 2 5 2 
5 169 3 2 2 3 
5 221 3 2 4 1 
5 377 5 2 5 1 
5 493 5 3 5 2 
5 697 5 4 5 3 

36.8699 
22.6199 
28.0725 
16.2602 
43.6028 
12.6804 
14.2500 

8.7974 
6.7329 
9.5273 
5.4526 
6.3597 
3.5798 

25.0576 
20.6097 

9.9395 
30.5102 
24.1895 
11.8123 
15.5303 
23.7773 
44.7603 
39.3076 
20.9830 
18.3247 
15.3921 

1 0 O )  

U' = 0 1 0 and 

1; 0 1 

= ~ f f =  i? . 

0 

It follows that (1o 
j = 1 ;  o 1 

0 0 

V 
! 

1; 

0 

- 1  

1 

0 

(18) 

1 /1 ;~  
(19) 

i.e. the triangular matrix f f  can be decomposed as the 
product of Z and a shear transformation S given 
by S = 1 + (1/1;)lel)(e31. W e  eventually _get the 
following relation: S = URf",  where U = U'U 
and fz = V V'. Expanding R = L/-IS ~r ~/-i Q-i ,  one can 
see that, as ~r-~ f,,-~ Z 3 = Z 3, the action of R on the lattice 
Z 3 corresponds to a conjugation of a single shear trans- 
formation, which again yields a shear transformation: 

= / / - ' S O  = 1 + (1 / r ) l / ) - ' e l ) (Ote3 l .  (20) 

5. Comparison with experimental data 

In this section, we will briefly explain the experiments 
performed on bicrystals by Putaux & Thibault-Dessaux 
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(1990) and compare their results on the rotation angles ~o 
and index 27 of the CSL with our calculations via the 
shear transformations. Putaux & Thibault-Dessaux 
(1990) first fabricated bicrystals of silicon with 
symmetric tilt coincidence boundary 27=9(122)  
corresponding to a rotation through 38.94 ° about the 
rotation axis [0,1,1]. In a second step, these bicrystals 
were compressed at different temperatures and the 
resulting 27 of the CSL, the orientational relationship, 
i.e. the angle ~o between the two lattices, and their 
interface were determined. 

We have tried to reproduce some of their numerical 
results by a computer program selecting shear transfor- 
mations giving the observed 27 and ~0 analogous to what 
is shown in Table 1. Table 2 shows the case where we 
found a unique shear transformation lying in the interface 
of the two crystals. The table shows the single shear 
directions s = m v + n w  given in the adapted basis 
u = (0, 1, 0), v = (0, - 1 ,  1) and w -- (1, 0, 0) and in 
standard coordinates. In Table 3, we list the cases where 
we found two shear transformations with shear directions 
so = mov + now and Sb = mb v + nbW, which have rela- 
tively small shear parameters compared with the single 
shear case and reasonably small F values. In both cases, 
our rotation angle ~v and E perfectly agree with the 
experimental data. 

6. Conclusions 

The transition matrix between two lattices completely 
describes their orientational relationship. The existence 
of a coincidence lattice is equivalent to the rationality 
of this matrix. On the other hand, a matrix of 
determinant +1 can be factorized into a product of at 
most four shear matrices. We have shown that the 
rational orientational relationships correspond to a 
factorizafion into at most two shear matrices. These 
cases can be labelled by an integer F,  which can be 
related to the coincidence index 27. The examination of 
different observations on experimentally produced 
bicrystals of silicon shows that the very high 27 (up 
to 337) are actually associated with low F 
(1 < F < 4). We therefore expect this approach of 
orientational relationships to have a physical basis. An 
apparent difficulty with this analysis is that to a given 
orientational relationship usually more than one inter- 
pretation in terms of shear transformations can be 
given. We believe, however, that these different 
solutions can be evaluated by considering the geometry 
of the shear transformations and, in particular, the shear 

Table 2. The unique shear transformations for  different 
CSLs transforming Lo into RL b 

The shear direction s lies at the interface of the two crystals. It is given 
in the adapted basis v = (0, - 1 ,  1) and w = (1,0, 0) by s = mv + n w  
and in standard coordinates by s = (n, -m ,  m). 

E ~o m n s F 

59 45.9795 3 - 1 0  ( -10,  - 3 ,  3) 1 
153 47.6853 5 - 1 6  ( - 1 6 , - 5 , 5 )  1 
187 42.8935 5 - 1 8  ( - 1 8 , - 5 , 5 )  1 
337 44.8302 7 - 2 4  (-24,  - 7 ,  7) 1 

Table 3. Double shear transformation with shear 
directions s a and s o 

Choice of relatively small shear parameters (compared with the single 
shear case) and reasonably small F values. 

~0 m a n a S a m b n b S b I ~ 

59 45.9795 5 3 (3,--5,5) 2 --1 (--1,--2,2) 1 
153 47.6853 2 --3 (--3,--2,2) 1 5 (5,--1, 1) 3 
187 42.8935 4 1 (I ,--4,4) 2 --3 (--3,--2,2) 4 
337 44.8302 - - 1 2 - - 7  (--7,12,--12) 5 --3 (--3,--5,5) 1 

vectors that could be involved in structural transforma- 
tions. Such an analysis will be given in a future paper. 
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